Draft Documentation
ADPlus

ADPlus V7.0 is a total rewrite of ADPlus. ADPlus is now written in managed code which will allow us to add new features much easier.
ADPlus.exe keeps the basic functionality from ADPlus.vbs with some additional features. In addition there is a new companion called ADPlusManager which extends ADPlus to a distributed environment like a HPC computer cluster. This document includes the documentation for ADPlus and ADPlusManager.
ADPlus Usage

Command line syntax options:

 ADPlus -? or ADPlus -help

 Displays a summarized help

 ADPlus -HelpConfig

 Displays the built-in key-words and the default behavior settings

 ADPlus <RunMode> -o <OutputDirectory> [Options]

Executes ADPlus in one of the available run modes
RunMode: -hang or -crash
 -Hang
 Attaches to a process, takes a memory dump and detaches; used in hang situations

-Crash
Attaches to a process and stays attached waiting for exceptions or other events to act.
Used mostly when troubleshooting crashes but can be used in many more situations.

Additional commands

-o <OutputDirectory>

 Where to store logs and memory dumps.

-c <ConfigFile>

 Reads an ADPlus configuration file

 The syntax of such files is described in this document

-p <ProcessID>

 Identifies a process ID to be attached; can be used multiple times.

-pn <ProcessName>

 Identifies a process name to be attached. ProcessName can include the ‘*’ wild char

 So *note* would attach to notepad, to onenote, and so on.

 Can be used multiple times

-po <ProcessName>

 Same as –pn but indicates an optional process

 While –pn notepad would fail if notepad isn’t running, -po notepad will not fail.

-pmn <ProcessName>

Process Monitor. Adplus will stay running and monitoring if a process called ProcessName starts and attach to it.Valid only with –crash.

-sc <ProcessName> [arguments]

 Will cause ProcessName to be launched by the debugger

 This must be the last option as all remaining parameters are considered arguments for

 this process

-iis

 Selects all processes related to IIS, such as inetinfo.exe, dllhost.exe, etc.

-y <SymbolPath>

 Sets the symbol path for the debugger;

 Multiple paths can be provided separated by semi-colons

-yp <SymbolPath>

 Adds a symbol path; multiple paths can be provided separated by semi-colons

-mss <LocalCachePath>

 Adds Microsoft’s symbol server using the supplied local cache

-FullOnFirst

 Changes the default behavior for first chance exceptions to full dump

-MiniOnSecond

 Changes the default behavior for second chance exceptions to mini-dump

-NoDumpOnFirst

 Changes the default behavior for first chance exceptions to not emit a dump

-NoDumpOnSecond

 Changes the default behavior for second chance exceptions to not emit a dump

-Do

 Dump only; changes the default behavior to only include memory dumps

 No additional actions like call stacks will be included.

-r <quantity> <interval in seconds>

 Repeat the attach at a given interval; used only with Hang mode

 Ex.: -r 3 30 runs ADPlus 3 times with an interval of 30 seconds

-Gs

 Indicates that only generation of a script is desired

 No process selection should be included when using this option

 Use if you want to create a script that can be used manually on another machine

-CTCF

 Generates a full dump with CTL+C

-CTCFB

 Generate full dump with CTL+C and breaks after that
-CTCV

 No action (void) with CTL+C; simply breaks into the debugger.

-lcq

 Sets the last command of the script to Q (quit)

 This is the default behavior

-lcg

 Sets the last command of the script to G (Go)

-lcgn

 Sets the last command of the script to GN (Go not handled)

-lcqd

 Sets the last command of the script to QD (Quit and Detach)

-lcv

 Sets the last command of the script to Void; simply breaks into the debugger.

-ce <exception code>

 Adds a custom exception to be monitored; the default behavior is assumed.

 Ex.: -ce 0x80501001

-bp <address[;action]>

 Adds a breakpoint to be monitored; action can be any known keyword

 Ex.: -bp MyModule!MyClass::MyMethod;MiniDump

-dbg <Debugger>
 Selects the debugger to be used; can be cdb, windbg or ntsd

 The default is cdb

-dp <DebuggersPath>

Informs ADPlus the path to the debuggers folder. This is normally used if you copied ADPLus to a separate folder

-q2

Sets the return action for all second chance exceptions to Q (quit)

-g2

Sets the return action for all second chance exceptions to GN (go not handled)

Discontinued commands
-Quiet

This command isn't necessary as ADPlus doesn't display any pop-up dialogs anymore.

Samples

ADPlus –hang –pn notepad.exe –o c:\dumps

 Attaches to notepad.exe in hang mode and saves logs and dumps to c:\dumps

ADPlus –crash –pn notepad.exe –pn calc.exe –mss c:\symbols –o c:\dumps

 Attaches to notepad.exe and calc.exe in crash mode

 Saves logs and memory dumps to c:\dumps

 Adds Microsoft’s symbol server using c:\symbols as a local cache

ADPlus –crash –pmn calc.exe –o c:\dumps

 Monitors the machine and waits for processes of calc.exe to start

 When a new instance of calc.exe starts, attaches in crash mode

ADPlus –p 1234 –c AdpCrashType1.cfg

 Attaches to the process with ProcID = 1234

 Uses a configuration file called AdpCrashType1.cfg (loaded from the debuggers folder)

ADPlus Configuration File

An ADPlus configuration file is a XML file that allows you to configure ADPlus with more granularity then the command line options. All command line options can be set in a configuration file and you can combine the usage of command line options and configuration files.

Several of the tags below accept a list of actions, like HangActions or Actions1 for exceptions. This list of actions is a list of ADPLus built-in keywords like FullDump, Stack and others. For a full list of built-in key words run ADPlus -HelpConfig. You can create your own custom key words using the configuration file.

The syntax below includes the sections that can be included in a configuration file. All sections are optional, you include just what you need to get the behavior you desire.

 <ADPlus Version="2">

 <!-- Comments -->

 <KeyWords>

 <!-- defining custom keywords -->

 </KeyWords>

 <Settings>

 <!-- defining basic settings (run mode, quiet mode, etc.) -->

 </Settings>

 <PreCommands>

 <!-- defines a set of commands to execute at the beginning of the script -->

 </PreCommands>

 <PostCommands>

 <!-- defines a set of commands to execute at the end of the script -->

 </PostCommands>

 <Exceptions>

 <!-- defining new exceptions or configuring existing ones -->

 </Exceptions>

 <Breakpoints>

 <!-- defining breakpoints -->

 </Breakpoints>

 <HangActions>

 <!-- defining actions for hang mode -->

 </HangActions>

 <LinkConfig>

 <!-- loading another config file -->

 filename

 </LinkConfig>

 </ADPlus>

Below is the syntax for each of the sections above; again, you just need to add the tag that is of interest. Most sections allow for an <Include> tag where you can include content from another configuration file which needs to follow the same syntax as any ADPlus configuration file.
Keywords Section

<KeyWords>

 <KeyWord Name="Key1"> Command </KeyWord>

 <Include> filename </Include>

</KeyWords>

Example:

<KeyWords>

 <KeyWord Name="Detach"> QD </KeyWord>

</KeyWords>

The above creates a key-word called Detach which is equivalent to the debugger command QD.

Settings Section

<Settings>

 <Option> option </Option>
 <Runmode> option </Runmode>

 <LastScriptCommand> option </LastScriptCommand>
 <OutputDir> path </OutputDir>
 <ProcessID> procID </ProcessID>
 <ProcessName> procname </ProcessName>
 <ProcessNameOptional> procname </ProcessNameOptional>
 <ProcessToMonitor> procname </ProcessToMonitor>

 <Spawn> command arguments</Spawn>
 <Sympath> symbolspath </Sympath>
 <SympathPlus> symbolspath </SympathPlus>
 <MSSLocalCache> local_cache_path </MSSLocalCache>
 <Debugger>option</Debugger>
 <IISAdd>proc1;proc2</IISAdd>
 <IISSet>proc1;proc2</IISSet>
 <Repeat Repeats="Quantity" Interval="seconds" />

 <NotifyList> machine1;machine2</NotifyList>
 <CustomDump> option </CustomDump>
</Settings>

Accepted Values

<Option> option </Option>

 option = FullOnFirst | MiniOnSecond | NoDumpOnFirst | IIS | DumpOnly | ExtensionInteraction | QuitOnSecond | GoOnSecond
<Runmode> option </Runmode>

 Option = Crash | Hang

<LastScriptCommand> option </LastScriptCommand>

 Option = Q | QD | G | GN | Void

<Debugger>option</Debugger>

 Option = Windbg | CDB | NTSD

<CustomDump> option </CustomDump>

 Option = any debugger’s dump option like /ma.
<IISAdd> proc1 </IISAdd>

 Adds proc1.exe to the list of processes related to IIS

<IISSet> proc1;proc2 </IISSet>

 Resets the list of processes related to IIS

<NotifyList> machine1; machine2 </NotifyList>

 Defines the list of machines to be notified when the

 Notify action is executed

 This seems not to be working on Vista.

Example:
<Settings>

 <Option> DumpOnly </Option>

 <Option> FullOnFirst </Option>

 <Runmode> Hang </Runmode>

 <ProcessID> 1234 </ProcessID>

 <ProcessName> Calc.exe </ProcessName>

 <ProcessName> Notepad.exe </ProcessName>
 <Repeat Repeats="3" Interval="60" />
</Settings>

PreComands Section

<PreCommands>
 <DebugActions> actions </DebugActions>

 <ShellSync>

 <Application> some.exe </Application>

 <Arguments> a b c </Arguments>

 </ShellSync>

 <ShellAsync>

 <Application> some.exe </Application>

 <Arguments> a b c </Arguments>

 </ShellAsync>

 <Include> filename </Include>

</PreCommands>
actions = a set of known key words

Example:
<PreCommands>

 <DebugActions> LoadedModules;Time </DebugActions>

 <ShellAsync>

 <Application> logman.exe </Application>

 <Arguments> -start High CPU </Arguments>

 </ShellAsync>

</PreCommands>

PostCommands Section

Same as PreCommands; just replace the external tag with <PostCommands>

Exceptions Section

<Exceptions>

 <Exception Code="SomeCode"> or
 <NewException Code="SomeCode" Name="SomeName"> or
 <AllExceptions> or

 <AllEvents> or

 <All>

 <Actions1>actions</Actions1>

 <Actions2> actions </Actions2>

 <ReturnAction1> GN | GH | Q </ReturnAction1>

 <ReturnAction2> GN | GH | Q </ReturnAction2>

 </Exception> or </NewException> or </AllExceptions> or
 </AllEvents> or </All>

 <Include> filename </Include>

 </Exceptions>

actions = a set of known key words

Exceptions are things like AV, DivideByZero, etc.

Events are things like LoadLibrary, ThreadStart, etc.

Example:

<Exceptions>

 <Exception Code="AV">

 <Actions1>MiniDump;Log</Actions1>

 <Actions2> FullDump;Log </Actions2>

 </Exception>

</Exceptions>

Breakpoints Section

<Breakpoints>

 <Breakpoint Name= "MyBP" Address="Module!func+0x12" [Type="BP|BU"] [Passes="100"]>

 <Actions> actions </Actions>

 <ReturnAction> G|Q|QD </ReturnAction>

 </Breakpoint>

 <Include> filename </Include>

</Breakpoints>

actions = a set of known key words

HangActions Section

<HangActions> actions </HangActions>

actions = a set of known key words

LinkConfig Section

<LinkConfig>

 <!-- loading another config file -->

 filename

</LinkConfig>

Sample Configuration File
Below is a configuration file that can be used when enabling PageHeap:

<ADPlus Version='2'>

 <!--

 Configuring ADPlus to troubleshoot heap corruption

 To troubleshoot heap corruption you need also to enable pageheap using

 the gflags.exe tool that ships in the debuggers package.

 First chance AV creates a full dump and quits.

 Second chance configuration is not changed, any second chance

 exception will create a full dump.

 Debug break (Ctl+C) also creates a full dump and quits.

 If you prefer not to quit on any of these exceptions and resume

 the application just change the ReturnAction1 to GN

 All other first chance exceptions are configured to create only a log

 -->

 <Settings>

 <RunMode> CRASH </RunMode>

 </Settings>

 <Exceptions>

 <!-- Start setting all 1st chance exceptions to create only a log -->

 <AllExceptions>

 <Actions1> Log </Actions1>

 </AllExceptions>

 <!-- Configuring the AV exception -->

 <Exception Code='AV'>

 <Actions1> Log;FullDump </Actions1>

 <ReturnAction1> Q </ReturnAction1>

 </Exception>

 <!-- Configuring the Debug Break (CTL+C) exception -->

 <Exception Code='bpe'>

 <Actions1> Log;FullDump </Actions1>

 <ReturnAction1> Q </ReturnAction1>

 </Exception>

 </Exceptions>

</ADPlus>
ADPlusManager

ADPlusManager is a companion utility that allows you to control ADPlus in a distributed environment. The idea is to provide a mean of collecting dumps at the same time in multiple machines, or simply control ADPlus on multiple machines from a central location.

To accomplish this you start one instance of ADPlusManager on each machine you desire to control. You choose one of these machines to be the Master; all other machines will run as a Server and subscribe to this Master to receive requests. You can also run ADPlusManager as a client. As a client it can connect to a Master or Server and send requests. The client can work as a simple command line client or a GUI client.

Configuration file

ADPlusManager requires a configuration file (ADPlusManager.exe.config) that needs to reside in the same folder as ADPlusManager.exe. This will usually be the folder where you installed the Microsoft's Debuggers Package.
To avoid overriding your actual configuration file every time you install a new version of the Microsoft Debuggers Package, we ship the configuration file as ADPlusManager.exe.config.sample. Before using ADPlusManager.exe for the first time please rename the configuration file to ADPlusManager.exe.config by removing the .sample extension, and set the parameters available in this file according to your needs.

Below is the syntax for this configuration file. All parameters are mandatory and are documented through comments in the file itself.
<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<!-- What option to assume if run without parameters-->

<!-- Can be Help, GUI, Master or Server-->

<add key="DefaultBehavior" value="Help"/>

<!-- The folder where to store the log-->

<add key="LogPath" value="c:\logs"/>

<!-- Installation path for the Microsoft Debuggers Package-->

<add key="DebuggersPath32" value="c:\debuggers32"/>

<!-- On 32 bit machines this will be ignored but cannot be omited-->

<add key="DebuggersPath64" value="c:\debuggers64"/>

<!-- The parameters below define the protocol and port that this instance will be listening to-->

<add key="ThisProtocol" value="TCP"/>

<add key="ThisPort" value="5555"/>

<!-- The parameters below are ignored if this machine is the one running as a Master-->

<add key="MasterMachine" value="SomeMachine"/>

<add key="MasterProtocol" value="TCP"/>

<add key="MasterPort" value="5555"/>

<!-- Shutdown mode for host (Master or Server) roles-->

<!-- Can be Interactive or ServiceCall-->

<add key="ShutdownMode" value="Interactive"/>

</appSettings>

</configuration>
The "Shutdown" parameter indicates how the server can be shut down. If you choose "Interactive" you will see a prompt saying "Press Enter to finish". Once you click the Enter key the server shuts down. If you choose the "ServiceCall" option you don't get the prompt above. To shut down the server you can connect to it through a client and execute the Shutdown command.

You can always shut down a server by closing the cmd.exe window where it is running.

ADPlusManager Usage

ADPlusManager <role> [options]

Roles: Help | Master | Server | Client | GUI
Master – starts listening as a Master; can receive subscriptions from servers

Server – starts listening as a Server; will subscribe to the Master

GUI – starts as a client with a graphic user interface

Client – starts as a command line client; related options are described below

Help – displays a summarized help on the screen

Examples

AdplusManager Master

Starts AdplusManager as a Master and starts listening to requests using the protocol and port defined in the configuration file.
ADPlusManager Server

Starts ADPlusManager as a Server and starts listening to requests using the protocol and port defined in the configuration file.

The server will connect to the Master defined in the configuration file and subscribe for requests.

ADPlusManager GUI

Starts ADPlusManager in client mode with a GUI.

ADPlusManager Client

Starts ADPlusManager in client mode as a console application..

Client Commands
The commands below are available when using ADPlusManager as a client via a console application. Most commands have a short and long version, like Status or st.
Help

 Lists all available commands

Quit

 Ends the application

Connect <Machine> <Protocol> <Port>

Connects to a server or master using the provided parameters

You need to run this command before running any other command that sends a request to a server.

Protocol can be TCP or HTTP

<Status | st>

 Displays the status of the connected machine
Log

 Displays the Master’s log

<ADPLocal | al> <Bitness> <Adplus Parameters>

Runs ADPlus locally on the connected machine

Bitness: 32 or 64 – indicates which debugger to use

ADPlus parameters – which parameters to use when launching ADPlus

Ex.: ADPLocal 32 –hang –o c:\dumps –pn calc.exe

<ADPAll | aa> <Bitness> <Adplus Parameters>

 Same as above but running on all machines (all servers and the master)

<ADPAllExc | ae> <Bitness> <Adplus Parameters>

 Same as above but running on all machines except the master

<ADPSelected | as> <Bitness> -m Machine1 [-m Machine2…] <Adplus Parameters>

 Same as above but running on the selected machines

<RunLocal | rl> <SomeApp> [parameters]
Run a given application (SomeApp.exe) locally on the connected machine

Ex.: RunLocal notepad.exe somefile.txt

<RunAll | ra> < SomeApp > [parameters]

 Same as above but running on all machines

<RunAllExc | re> < SomeApp > [parameters]

 Same as above but running on all machines except the master

<RunSelect | rs> <-m Machine1> [-m Machine2…] < SomeApp > [parameters]

 Same as above but running on the selected machines

* Comment
 Any line starting with an "*" is considered a comment

Example:

ADPlusManager Client

Connect MyMachine TCP 5555

Status

ADPLocal 32 -hang -pn calc.exe -o c:\dumps

Log

Quit

ADPlusManager GUI

ADPlusManager GUI client allows you to connect to a Master or Server and execute tasks on them. For example, you could start an ADPlus run on any of those machines or all of them at the same time.

The GUI has two main tabs: Connectivity and Execution

Connectivity Tab

In the Connection tab you can manage the machines that you want to access and the machine that you want to connect to.

When you start the GUI it will try to connect to the Master that is defined in the configuration file. If the master is running then the GUI will connect to it and will populate the tree view showing all servers subscribed to it.

If the Master is not running when you start the GUI, no machine will be connected and the tree-view will be empty. You can connect to any running Master using the Add button.

The tree-view allows you to connect to or query the status and history (log) of any machine shown in the tree view.

Execution Tab

On the Execution tab you define what to run and where to run it

What to run – you can select between running ADPlus, run any application, or copying an ADPlus configuration file from one machine to another.

Where to run – you can choose between running on the local machine, on all machines, or on a selection of machines.

The execution is sent to the machine you are connected to; you must be connected to a Master or Server to execute a command.

To execute ADPlus you need to provide the arguments for ADPlus. For example you could type into the Arguments text box the following:

 -hang –pn calc.exe –o c:\dumps

If you choose the “Run on all machines” option and click the execute button, ADPlusManager will run ADPlus on all machines with the parameters above.

You need to inform if the 32-bits or 64-bits debugger is to be used.
Logs

ADPlusManager creates a log were all actions are recorded. The log can also be used for troubleshooting as all errors and exceptions are logged in there. The log is saved to the LogPath defined in the ADPlusManager.exe.config file.

Each log file is identified by a time stamp (when the application started) and the role.
Known issues

Connectivity

You should start the master before starting the servers; otherwise the servers will not be able to subscribe. However you can force a server to subscribe (or re-subscribe) by connecting to it through a client or the GUI interface.
If you stop the Master, all servers that subscribed to this master will stay without a master. You can still connect to each of these servers using the client, but if you want them to re-subscribe you will need to restart the server or use a client to force it to re-subscribe.

Shared folders

If you install the debuggers package on a shared folder you may have problems with ADPlus. The reason is that ADPlus is managed code and by default code running from a shared folder doesn’t have full trust. There are two options here:

Option 1 - Simply copy ADPlus.exe, ADPlusManager.exe and ADPlusManager.exe.config to a local folder. You don't need to copy the whole debuggers folder, just the files above. If you do that then when running ADPlus use the

 -dp swicth (debugger's path) to let ADPLus know where it can find the debuggers.

Option 2 - You will need to configure the .Net Framework on this machine to give full trust to the shared folder where you installed the debuggers.

To do that use the .Net Framework configuration tool (Administrative Tools) and in the Runtime Security Policy create a new node under the LocalIntranet_Zone. For the membership set the URL to something like file://machine/share/* where //machine/share is the name of the share. Don't forget the /* at the end. For the permission set select Full Trust.

On some machines like Windows Server with IE Enhanced security enabled you may need to do additional settings in IE to configure this share as belonging to the Intranet (IE/Internet Options/Security/Local Intranet).
Using HTTP

If you choose the HTTP protocol you may need to configure some security settings to avoid being always prompted to allow the use of the http ports.

Basically you will need to modify the reservation rights for a portion of the HTTP namespace. There is some guidance on http://blogs.msdn.com/drnick/archive/2006/04/14/configuring-http.aspx.
Don't have .Net Framework on your machine?

If you need to use the new version of ADPlus on a machine that doesn't have the .Net Framework installed then you can't do it as ADPlus is now written in managed code. There is no alternative solution for ADPlusManager but for ADPlus itself here is what you can do:
On a machine that has the .Net Framework installed you can run ADPlus with all the settings you need including the -gs (generate script) switch. This will generate the script required by the debugger without attaching to any process.

On the machine that you need to debug your process create a folder to store dumps (like c:\MyDumps) and inside this one create a folder for your debugging session (like c:\MyDumps\Session1). Copy the script to this session folder. Edit the script with Notepad and change the first, second and fourth commands to point to your own folders. These three commands look like this:
as AdpDumpDir c:\dumps\20080404_140112_Hang_Mode

.logopen /t "${AdpDumpDir}\ADPlus_log.log"

as AdpOutputDir c:\dumps

as AdpDumpDirEsc c:\\dumps\\20080404_140112_Hang_Mode
Don't make any change to the second line.

After the changes they should look something like this but with the names you chose:

as AdpDumpDir c:\ MyDumps \ Session1

.logopen /t "${AdpDumpDir}\ADPlus_log.log"

as AdpOutputDir c:\ MyDumps

as AdpDumpDirEsc c:\\ MyDumps \\ Session1

Notice that the difference between the path in the first and fourth line is that all back slashes "\" are written as double black slashes "\\". Be careful when replacing the strings to keep it this way.

Now that you made the required changes to the script you can use it with cdb or windbg. You can attach to the process you want to debug with a command line like:

cdb -p 1234 -c "$$<c:\MyDumps\Session1\DebuggerScript.txt"

where 1234 should be replaced with the process ID you are trying to debug and the string after the $$< will be the full path of your script file.

This should be equivalent to run ADPlus.

Another thing you may want to change is the 5th line with the time stamp. This line starts with a string like " as AdpTimeStamp". This will include the time stamp related to the time you generated the script. There is no harm in keeping this value as it is.

1

