Debugger Markup

Starting with the 6.6.07 version of the debugger we have included a new mechanism for enhancing output from the debugger and extensions: debugger markup language (DML). As with HTML the debugger’s markup support allows output to include directives and extra non-display information in the form of tags. Debugger user interfaces can parse out the extra information to provide new behaviors.

DML is primarily intended to address two issues:

· Linking of related information. One of the DML tags is a link tag which lets an output producer indicate that information related to a piece of output can be accessed via the link’s stated action. As with HTML links this allows user to navigate hyperlinked information in an intuitive way.
· Discoverability of debugger and extension functionality. The debugger and its extensions contain a huge body of functionality but very little of it is apparent. Users must simply know what is available, meaning that often users are unaware of commands which could help them. DML links let arbitrary commands be wrapped in alternate presentations, such as descriptive text, menu systems or linked help.
Another key thing to understand about DML is what it is not.

· DML is not HTML. DML is deliberately very simple and has only a handful of tags. Moving forward this simplicity will be maintained as DML is not intended to grow into a full presentation language. As there is a huge body of established debugger code based on an output stream of plain text a goal of DML is to allow simple translation between DML and plain text to support existing interfaces. This requires limiting DML to tags that are not critical to presentation. Effects such as colors can easily be supported since removing them does not remove the text carrying the actual information. On the other hand, formatting tags such as positioning would not be supported as there is no mapping to a stream of plain text.

· DML is not XML. DML does not attempt to carry semantic nor structured information. As mentioned above, there must be a simple mapping between DML and plain text, thus DML tags are all discardable. DML is not extensible; all tags must be defined by the debugger team.
As DML is text markup that can flow through the usual text handling channels in dbgeng and dbgeng remoting it is fully compatible with remoting. Just as with a web browser and server a DML “browser” will render content returned from the server, thus all DML content is inherently remotable. An extension or command on the server can produce rich or plain text on a client depending on the client user interface support for DML.
DML Content Specification

DML content roughly follows the XML/HTML rules for special characters. The characters &, <, > and “ are special and cannot be used in plain text. The equivalent escaped versions are &, <, > and ".

Example:

The text

“Alice & Bob think 3 < 4”

would be converted to the DML

"Alice & Bob think 3 < 4"

A significant departure from XML/HTML rules is that DML text can include stream-style formatting characters such as \b, \t, \r and \n. This is for compatibility with existing debugger text production and consumption.

DML tags are given as a starting <tagname [args]> and a following </tagname>. Currently all tags come in begin/end pairs but eventually DML might include XML-like singletons.

DML Tag Reference

<link [name=”text”] [cmd=”debugger_command”] [section=”name”]>link text</link>

The link tag is the basic hyperlinking mechanism in DML. It directs user interfaces which support DML presentation to display the link text as a clickable link. When a link with a cmd specification is clicked the debugger command is executed and its output should replace the current output.

The name and section arguments allow for navigation between named links, similar to HTML’s <a name> and #name support. When a link that has a section argument is clicked on the UI will scan for a link named with a matching name and will scroll that into view. This allows links to point to different sections of the same page (or a particular section of a new page). DML’s section name is separate to avoid having to define a new syntax which would allow a section name at the end of the command string.

Conversion to plain text drops the tags.

<exec cmd=”debugger_command”>descriptive text</exec>

An exec tag is similar to a link tag in that the descriptive text should be presented as a clickable item. However, in the exec case the given command is executed without replacing the current output, thus this gives a way to simply have commands executed with a click, such as from a menu.

Conversion to plain text drops the tags.

text, <i>text</i>, <u>text</u>

These tags request bold, italic and underlined text, respectively. They can be nested to have a mix of the properties.
Conversion to plain text drops the tags.

<col fg="name" bg="name">text</col>
Request foreground and background colors for the text. The colors are given as names of known colors instead of absolute values as that allows customers to control what kind of color they see. Current color names (defaults only apply to windbg):

· wbg and wfg – Default window background and foreground colors. Default to system colors for window and window text.

· clbg and clfg – Current line background and foreground colors. Default to system colors for highlight and highlight text.

· changed – Used for data that has changed since a previous stop point, such as changed registers in windbg. Defaults to red.

· srcnum, srcchar, srcstr, srcid, srckw, srcpair, srccmnt, srcdrct, srcspid, srcannot – Source element colors. Defaults can be seen in windbg.

· empbg and emphfg – Emphasized text. Defaults to light blue.

· subbg and subfg – Subdued text. Default to system color for inactive caption text and inactive captions.

· normbg, normfg, warnbg, warnfg, errbg, errfg, verbbg, verbfg – Output level colors. Defaults can be seen in windbg.

Conversion to plain text drops the tag.
DML Additions to the dbgeng Interface

DML ultimately is just text with embedded tags and some rules about special characters. dbgeng already has a set of text handling input methods and output interfaces, thus the addition of DML only requires specification of the type of content carried in input and output text.
Providing DML Content to dbgeng

A new output control flag, DEBUG_OUTCTL_DML, indicates that the text generated by a dbgeng method should be handled as DML content. If this flag is not given the text is treated as plain text context, just as before. DEBUG_OUTCTL_DML can be used with ControlledOutput, ControlledOutputVaList, ControlledOutputWide and ControlledOutputVaListWide. Text given must follow the DML rules for valid characters.
An additional control flag, DEBUG_OUTCTL_AMBIENT_DML, allows specification of DML context text without modifying any out output control attributes. DEBUG_OUTCTL_AMBIENT_TEXT has been added also as a more-descriptive alias for the previously-existing DEBUG_OUTCTL_AMBIENT.

All output routines have been enhanced to allow a new format specifier %[h|w]Y{t}. This format specifier has a string pointer as an argument and indicates that the given text is plain text and should be converted to DML format during output processing. This gives callers a simple way of including plain text in DML content without having to pre-convert to DML format themselves. The h and w qualifiers indicate ANSI or Unicode text, as with %s.
Providing DML Content From a Debuggee

dbgeng has been enhanced to scan debuggee output for a special marker – <?dml?> – that indicates the remaining text in a piece of debuggee output should be treated as DML. The mode change only applies to a single piece of debuggee output, such as a single OutputDebugString string, and is not a global mode switch.

Example:

OutputDebugString(“This is plain text\n<?dml?>This is <col fg=\”emphfg\”>DML</col> text\n”);

This piece of output will have a line of plain text followed by a line of DML where the acronym DML is done in a different color.

IDebugOutputCallbacks2

IDebugOutputCallbacks2 allows dbgeng interface clients to receive full DML content for presentation. IDebugOutputCallbacks2 is an extension of IDebugOutputCallbacks (not IDebugOutputCallbacksWide) so that it can be passed in to the existing SetOutputCallbacks method. The engine will do a QueryInterface for IDebugOutputCallbacks2 to see which interface the incoming output callback object supports. If the object supports IDebugOutputCallbacks2 all output will be sent through the extended IDebugOutputCallbacks2 methods; the basic IDebugOutputCallbacks::Output method will not be used. The new methods are:
· GetInterestMask – Allows the callback object to describe which kinds of output notifications it wants to receive. The basic choice is between plain text content (DEBUG_OUTCBI_TEXT) and DML content (DEBUG_OUTCBI_DML). In addition the callback object can also request notification of explicit flushes (DEBUG_OUTCBI_EXPLICIT_FLUSH).

· Output2 – All IDebugOutputCallbacks2 notifications come through Output2. The Which parameter indicates what kind of notification is coming in while the Flags, Arg and Text parameters carry the notification payload. Current notifications are:

· DEBUG_OUTCB_TEXT – Plain text output. Flags are from DEBUG_OUTCBF_*, Arg is the output mask and Text is the plain text. This will only be received if DEBUG_OUTCBI_TEXT was given in the interest mask.
· DEBUG_OUTCB_DML – DML content output. Flags are from DEBUG_OUTCBF_*, Arg is the output mask and Text is the DML content. This will only be received if DEBUG_OUTCBI_DML was given in the interest mask.
· DEBUG_OUTCB_EXPLICIT_FLUSH – A caller has called FlushCallbacks with no buffered text. Normally when buffered text is flushed the DEBUG_OUTCBF_COMBINED_EXPLICIT_FLUSH flag will be set, folding the two notifications into one. If no text is buffered a flush-only notification is sent.

Note that an output object can register for both text and DML content if it can handle them both. During output processing of the callback the engine will pick the format that reduces conversions, thus supporting both may reduce conversions in the engine. It is not necessary, though, and supporting only one format is the expected mode of operation.

Automatic Conversions

dbgeng will automatically convert between plain text and DML as necessary. For example, if a caller sends DML content to the engine the engine will convert it to plain text for all output clients which only accept plain text. Alternately, the engine will convert plain text to DML for all output callbacks which only accept DML.
New Use of DML

Several engine commands have been enhanced and a few have been added during validation of the initial DML implementation. These commands are not intended to be comprehensive, but they do show some of what can be done with DML.
New Commands

.dml_flow <start> <target>

.dml_flow allows for interactive exploration of code flow for a function. It builds a code flow graph for the function starting at the given start address (similar to uf). It then shows the basic block given the target address plus links to referring blocks and blocks referred to by the current block. The intent of the DML version command is to show how simple use of links enables easy navigation of something that would be very tedious to do with typed commands.

.dml_start [<filename>]
.dml_start is intended to be a “start page” for DML, allowing exploration of available commands. The default implementation is a simple set of links that allow navigation of some debuggee content, core commands, available extensions and dot commands. Users can customize .dml_start by explicitly providing a filename to read or by setting the DBGENG_START_FILE environment variable. If .dml_start is given a file it reads DML from the file and displays it.
!dml_proc

!dml_proc is a new extension which displays current processes and allows drilling into processes for more information. The top-level process links go to more-detailed process information, such as a thread list. Thread list entries link to thread information and potentially stack information down to individual frames. Kernel-mode process displays allow setting and resetting user-mode state – embedded .process exec tags – and full !process 0 7 output. !dml_proc works for both user- and kernel-mode, auto-selecting what information to display.

.prefer_dml [0|1]

.prefer_dml controls a global setting as to whether DML-enhanced commands should default to DML mode or not.

Enhanced Commands

.help /D
.help has a new DML mode where a top bar of links is given, allowing display of commands that start with a particular letter. This gives more convenient browsing than having to read the full list. Linked to by .dml_start.

.chain /D

.chain has a new DML mode where extensions are linked to a .extmatch command displaying the commands for an extension DLL. Linked to by .dml_start.

.extmatch /D

.extmatch has a new DML mode where extension commands are links to help for the command. This is only supported when the extension advertises that it has per-command help, such as uexts. Any dbgeng-style extension can participate by returning the new DEBUG_EXTINIT_HAS_COMMAND_HELP flag from initialization and having their !help implementation take a command name as an argument.

lmD

lm has a new DML mode where module names link to an lmv command giving details on a particular module. The column headers are also active links to allow for selection of sorting by name or by start address.

kM
k has a new DML mode where frame numbers link to a .frame/dv command which displays locals for the frame.

.printf /D
The /D option for .printf indicates that the string produced by the .printf is DML content. This allows a script or command to produce DML-enhanced output. .printf is not affected by .prefer_dml.
Command Window/Console Enhancements

All of the Windows debuggers now have command output areas which support DML parsing. In windbg the command window supports all DML behavior and will show colors, font styles and links. The console debuggers – ntsd, cdb and kd – only support the color attributes of DML, and the only when running in a true console with color mode enabled. Debuggers with redirected I/O, ntsd –d or remote.exe sessions will not display any colors (and in fact will not even use IDebugOutputCallbacks2).

All of the Windows debuggers have dual I/O paths so that they fall back on using IDebugOutputCallbacks[Wide] when running on or connected to dbgeng.dll versions that do not support IDebugOutputCallbacks2.

windbg’s Command Browser Window

windbg has a new user interface element which parses and displays DML: the command browser window. The command browser window works similarly to the existing command window, with a place for output display and a text entry bar. However, the command browser window is intended to collect the full output of a single command for display, similar to a web page. All tags – link, exec and appearance modifications – are fully supported.
The command browser window deliberately mimics the behavior of a web browser, with a drop-down history and forward/back buttons (app commands for forward and back are supported so extra mouse buttons work). The history drop-down only displays the last twenty commands but full history is kept so by going back in the commands you can get the drop-down to display older history.

Command browser windows can be either auto-refresh or manual-refresh. Auto-refresh browsers will automatically re-run their command on debugger state changes. This keeps the output “live” but at the cost of executing the command on all changes (the debugger has no way of knowing exactly what state the command relies on and thus cannot optimize refresh). Auto-refresh is on by default. If the browser does not need to be live the window’s context menu can be used to disable auto-refresh. Command windows will also automatically disable auto-refresh if they detect that a command is causing debugger changes, because in that case the window would refresh continuously.

A “recent commands” sub-window has been added to the View menu to hold commands of interest. Selecting a recent command opens a new browser with the given command. There is a menu item on the browser window’s context menu that adds the window’s current command to the list of recent commands. The list of recent commands is persisted in workspaces.

The View menu has a “Set Browser Start Command” option which allows a user to set a preferred command for new browser windows to start with, such as .dml_start. This command is saved in workspaces.

Links have a right-click context menu similar to the right-click context menu in a web browser. Links can be followed or followed in a new browser window. A link’s command can be copied to the clipboard for use. Links do not currently have hover popups that display link commands.

Due to a richedit limitation clicking too far to the start of the first character of a link may not be recognized. If it isn’t, try clicking a little farther away from the beginning.

.browse <command> in the command window will open a new command browser window and execute the given command.

You can have as many command windows open at once as you like. Command windows persist in workspaces but only save the current command; the history is not kept.

Command browser windows can run any debugger command, it does not have to be a command that produces DML. You can use browser windows to have an arbitrary set of commands active for inspection regardless of DML. Command browser window commands are executed by the engine, not by the user interface. This means that user-interface specific commands, such as .cls, cannot be used in command browser windows. It also means that when the user interface is a remote client the command will be executed by the server, not by the client, and will show server state.
The command browser window executes the command synchronously and so does not display output until the command has completed. There is currently no way to have output produced as the command runs; long-running commands will not show anything until they have finished.

Command completion in the input bar is supported.

A new command browser window can be opened with Ctrl+N.

Console Debugger Color Mode
As mentioned previously, ntsd, cdb and kd now have the ability to display colored output when running in a true console. This is not the default, it requires color mode to be explicitly enabled via tools.ini. The new col_mode <true|false> token in tools.ini controls the color mode setting.
When color mode is enabled the debugger can produce colored output. By default most colors are not set and instead default to the current console colors. The new col <name> <colspec> token in tools.ini allows users to define whatever colors they want for particular settings. The color names are the same color names discussed above under the “col” tag. colspec is a three-letter RGB indicator of the form [rR-][gG-][bB-]. A lower-case letter indicates darker, an upper-case letter indicates brighter and a dash indicates no color component contribution. Due to console color limitations bright is not actually per-component, but applies to all components if any request bright. In other words, rgB is the same as RGB. For this reason it is recommended that all caps be used if any caps are going to be used. Examples:

· R--: Bright red.

· -g-: Dark green.

· -gb: Dark cyan.

· RG-: Bright yellow (same as Rg-, but RG- is the preferred form).

· ---: Black.

· RGB: White.

